Current-induced magnetization reversal in SrRuO3
نویسندگان
چکیده
منابع مشابه
Current-induced magnetization reversal in terms of power dissipation
Magnetization excitation and reversal induced by spin-transfer torques is described in terms of power received or dissipated in a macrospin system. This approach provides a clear and intuitive understanding of the effect of both applied magnetic fields and injected spin-polarized currents on magnetization reversal. It is illustrated by solving the case of magnetization reversal in a nanopillar ...
متن کاملSpin-current-induced magnetization reversal in magnetic nanowires with constrictions
We have performed experiments on current-induced domain-wall motion sCIDWMd in the case of the domain walls sDWd trapped within the nanoscale constrictions in patterned NiFe structures. Direct observation of current-induced magnetization reversal was achieved and critical current densities jc were measured in the presence of easy-axis magnetic fields. The direction of CIDWM was found to be alon...
متن کاملSpin-transfer-induced precessional magnetization reversal
A magnetoelectronic device is proposed in which a spin-current pulse produces a rapid reversal of the magnetization of a thin film nanomagnet. A spin-transfer torque induces the reversal and the switching speed is determined by the precession frequency of the magnetization in a thin film element’s demagnetization field. Micromagnetic simulations show that this switching occurs above a threshold...
متن کاملCurrent-induced magnetization reversal in high magnetic fields in Co/Cu/Co nanopillars.
Current-induced magnetization dynamics in Co/Cu/Co trilayer nanopillars (approximately 100 nm in diameter) have been studied experimentally at low temperatures for large applied fields perpendicular to the layers. At 4.2 K an abrupt and hysteretic increase in resistance is observed at high current densities for one polarity of the current, comparable to the giant magnetoresistance effect observ...
متن کاملEfficient current-induced domain-wall displacement in SrRuO3.
We demonstrate current-induced displacement of ferromagnetic domain walls in submicrometer fabricated patterns of SrRuO3 films. The displacement, monitored by measuring the extraordinary Hall effect, is induced at zero applied magnetic field and its direction is reversed when the current is reversed. We find that current density in the range of 10(9)-10(10) A/m2 is sufficient for domain-wall di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2012
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.86.085102